МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Нижегородской области Администрация Краснобаковского муниципального округа МАОУ "СОШ № 1 р.п. Красные Баки "

PACCMOTPEHO

Педагогический совет

Протокол № 1 от «28» 08 2025 г. **УТВЕРЖДЕНО**

Директор МАОУ

--- A F

No. 146 00 10 5

РАБОЧАЯ ПРОГРАММА

Элективного курса «Практика подготовка к ЕГЭ по биологии»

для обучающихся 10 – 11 классов

р. п. Красные Баки 2025

Пояснительная записка

Программа разработана на основе Федерального государственного образовательного стандарта среднего общего образования по биологии; кодификатора элементов содержания и требований к уровню подготовки выпускников общеобразовательных учреждений для проведения единого государственного экзамена по биологии; спецификации контрольных измерительных материалов для проведения единого государственного экзамена по биологии.

Элективный курс «Практика подготовки к ЕГЭ по биологии» предназначен для учащихся 10-11 классов и рассчитан на 68 часов (1 час в неделю). Программа данного элективного курса рассчитана на два года обучения в 10 и 11 классе и имеет ряд особенностей. Она предусматривает:

- 1) использование разнообразных наглядных материалов видеофильмов, слайдовых презентаций, фотоизображений, таблиц и схем в цифровом формате, которые сопровождают теоретический материал и способствуют своевременному закреплению знаний;
- 2) использование теоретического материала в электронной форме, который соответствует кодификатору элементов содержания контрольно-измерительных материалов ЕГЭ, что позволяет самостоятельно изучить материалы в случае пропуска занятий;
- 3) применение комплектов тестовых материалов и заданий, составленных по контрольноизмерительным материалам ЕГЭ по биологии и позволяющих проводить контроль и самоконтроль знаний по всем блокам содержания ЕГЭ,
- 4) дифференцированный подход к выпускникам при подготовке к ЕГЭ с учетом уровня их обучаемости, за счет повторения разделов биологии на базовом, повышенном и углубленном уровне.

Кроме того, при изучении курса используются задания, которые систематизированы по разделам, темам и типам, что позволяет эффективно контролировать степень усвоения как отдельных тем, так и всего курса в целом.

Цели курса:

- 1) повышение качества биологического образования на основе применения современных информационно-коммуникационных технологий.
- 2) развитие познавательных интересов, интеллектуальных и творческих способностей в процессе работы с различными источниками информации, умений по выполнению типовых заданий, применяемых в контрольно-измерительных материалах ЕГЭ;
- 3) воспитание культуры труда при работе с цифровыми образовательными ресурсами, позитивного ценностного отношения к живой природе, собственному здоровью и здоровью других людей.

Задачи курса:

- 1) повторение, закрепление и углубление знаний по основным разделам школьного курса биологии с помощью различных цифровых образовательных ресурсов;
- 2) овладение умениями обосновывать место и роль биологических знаний в практической деятельности людей, развитии современных технологий, находить и анализировать информацию о живых объектах;
- 3) формирование умения осуществлять разнообразные виды самостоятельной деятельности с цифровыми образовательными ресурсами;
- 4) развитие познавательных интересов, интеллектуальных и творческих способностей в процессе изучения биологии, в ходе работы с различными источниками информации;

- 5) развитие самоконтроля и самооценки знаний с помощью различных форм тестирования;
- 6) использование приобретенных знаний и умений в повседневной жизни для оценки последствий своей деятельности по отношению к окружающей среде, здоровью других людей и собственному здоровью; обоснования и соблюдения мер профилактики заболеваний, правил поведения в природе.
- 7) воспитание культуры труда при использовании компьютерных технологий, ответственного отношения к своему здоровью.
- 8) Подготовка обучающихся к успешной сдаче ЕГЭ по биологии

Планируемые результаты изучения курса

Выпускник должен знать:

- особенности строения и процессов жизнедеятельности биологических объектов (клеток, организмов), их практическую значимость;
- методы биологической науки для изучения клеток и организмов;
- составляющие исследовательской и проектной деятельности по изучению живых организмов (приводить доказательства, классифицировать, сравнивать, выявлять взаимосвязи);
- особенности строения и процессов жизнедеятельности организма человека, их практическую значимость;
- методы биологической науки при изучении организма человека;
- составляющие исследовательской и проектной деятельности по изучению организма человека;
- доказательства родства человека с млекопитающими животными;
- общие биологические закономерности, их практическую значимость;
- методы биологической науки для изучения общих биологических закономерностей: наблюдать и описывать клетки на готовых микропрепаратах, экосистемы своей местности;
- составляющие проектной и исследовательской деятельности по изучению общих биологических закономерностей, свойственных живой природе; существенные признаки биологических систем и биологических процессов;
- о влиянии деятельности человека на природу.

Выпускник должен уметь:

- •соблюдать правила работы в кабинете биологии, с биологическими приборами и инструментами;
- •проводить наблюдения за живыми организмами, ставить несложные биологические эксперименты и объяснять их результаты, описывать биологические объекты и процессы;
- •использовать приёмы оказания первой помощи при отравлении ядовитыми грибами, ядовитыми растениями, укусах животных; работы с определителями растений;
- •выделять эстетические достоинства объектов живой природы;
- •осознанно соблюдать основные принципы и правила отношения к живой природе;
- •ориентироваться в системе моральных норм и ценностей по отношению к объектам живой природы (признание высокой ценности жизни во всех её проявлениях, экологическое сознание, эмоционально-ценностное отношение к объектам живой природы);
- находить информацию о растениях и животных в научно-популярной литературе, биологических словарях и справочниках, анализировать, оценивать её и переводить из одной формы в другую;

- •выбирать целевые и смысловые установки в своих действиях и поступках по отношению к живой природе;
- •использовать на практике приёмы оказания первой помощи при простудных заболеваниях, ожогах, обморожениях, травмах, спасении утопающего; рациональной организации труда и отдыха;
- •проводить наблюдений за состоянием собственного организма;
- •реализовывать установки здорового образа жизни;
- •ориентироваться в системе моральных норм и ценностей по отношению к собственному здоровью и здоровью других людей;
- •находить в учебной и научно- популярной литературе информацию об организме человека, оформлять её в виде устных сообщений, докладов, рефератов, презентаций;
- •анализировать и оценивать целевые и смысловые установки в своих действиях и поступках по отношению к здоровью своему и окружающих; последствия влияния факторов риска на здоровье человека;
- •выдвигать гипотезы о возможных последствиях деятельности человека в экосистемах и биосфере;
- •аргументировать свою точку зрения в ходе дискуссии по обсуждению глобальных экологических проблем.

Учебно-методическая литература

- И. Б. Агафонова, В. И. Сивоглазов. Общая биология. 10-11 классы: Базовый и углубленный уровни. М.: Дрофа, 2014
- А.А.Каменский, Е.А.Криксунова, В.В.Пасечник «Биология. Общая биология. 10-11 классы»/ В.В.Пасечник, Г.Г.Швецов. -3-е изд., стереотип. М.: Дрофа, 2013
- Биология в таблицах, схемах и рисунках /Р.Г. Заяц (и др.). Изд. 6 е. Ростов н/Д: Феникс, 2013.
- КИМы, выпущенные в 2023- 2024 г.

Интернет ресурсы

- http://www.ebio.ru/index-1.html
- http://biologylib.ru/catalog/
- https://interneturok.ru/

Тематическое распределение количества часов

класс	№ п/п	Разделы, темы	Количество часов
10		Введение.	3
	1	Основы цитологии.	14
	2	Размножение и индивидуа- льное развитие (онтогенез) орга- низмов.	5
	3	Основы генетики.	8
	4	Генетика человека.	4
11	1	Основы учения об эволюции.	9

	2	Основы селекции и биотехнологии.	3
	3	Антропогенез.	4
	4	Основы экологии.	10
	5	Эволюция биосферы и человека.	4
	6	Работа с контрольно- измерительными заданиями.	4
	итого		68

1.Пояснительная записка (10 класс, 34 часа)

Программа элективного курса по биологии для 10 класса составлена в полном соответствии с Федеральным Государственным образовательным стандартом среднего общего образования, на основе Примерной программы основного общего образования по биологии и авторской программы автора В. И. Сивоглазова, полностью отражающих содержание Примерной программы, с дополнениями, не превышающими требований к уровню подготовки учащихся.

На изучение биологии на базовом уровне в 10 классе отводится 34 часа, и поэтому элективный курс даёт возможность изучить программный материал в полном объёме, добавляя на изучение материала ещё 1 час.

В программе элективного курса нашли отражение цели и задачи изучения биологии на ступени среднего (полного) общего образования, изложенные в пояснительной записке к Примерной программе по биологии (углубленный уровень).

Изучение биологии на ступени среднего (полного) общего образования в старшей школе на углубленном уровне направлено на достижение следующих целей:

освоение знаний о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науки в формировании современной естественнона-учной картины мира; методах научного познания;

овладение умениями обосновывать место и роль биологических знаний в практической деятельности людей, развитии современных технологий; проводить наблюдения за экосистемами с целью их описания и выявления естественных и антропогенных изменений; находить и анализировать информацию о живых объектах;

развитие познавательных интересов, интеллектуальных и творческих способностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем;

использование приобретенных знаний и умений в повседневной жизни для оценки последствий своей деятельности по отношению к окружающей среде, здоровью других людей и собственному здоровью; обоснования и соблюдения мер профилактики заболеваний, правил поведения в природе.

2. Требования к уровню подготовки учащихся

В результате изучения электива по биологии в 10 классе ученик должен знать /понимать

основные положения биологических теорий (клеточная); сущность законов Г.Менделя, закономерностей изменчивости;

строение биологических объектов: клетки; генов и хромосом;;

сущность биологических процессов: размножение, оплодотворение,

вклад выдающихся ученых в развитие биологической науки;

биологическую терминологию и символику;

уметь

объяснять: роль биологии в формировании научного мировоззрения; вклад биологических теорий в формирование современной естественнонаучной картины мира; единство живой и неживой природы, родство живых организмов; отрицательное влияние алкоголя, никотина, наркотических веществ на развитие зародыша человека; влияние мутагенов на организм человека, экологических факторов на организмы; взаимосвязи организмов и окружающей среды; причины нарушений развития организмов, наследственных заболеваний, мутаций,

решать биологические задачи; составлять схемы скрещивания;

выявлять источники мутагенов в окружающей среде (косвенно), антропогенные изменения в экосистемах своей местности;

сравнивать: биологические объекты (химический состав тел живой и неживой природы, процессы (половое и бесполое размножение) и делать выводы на основе сравнения; анализировать и оценивать глобальные экологические проблемы и пути их решения, последствия собственной деятельности в окружающей среде;

находить информацию о биологических объектах в различных источниках (учебных текстах, справочниках, научно-популярных изданиях, компьютерных базах данных, ресурсах Интернет) и критически ее оценивать;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

соблюдения мер профилактики отравлений, вирусных и других заболеваний, стрессов, вредных привычек (курение, алкоголизм, наркомания); правил поведения в природной среде;

оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение).

3. Содержание программы Введение (3 часа)

Место курса «Практикум подготовки к ЕГЭ по биологии» в системе естественнонаучных дисциплин. Методы исследования в биологии. Сущность жизни и свойства живого. Уровни организации живой материи. Цели и задачи курса.

Демонстрация портретов учёных – биологов, схемы «Связь биологии с другими науками».

1. Основы цитологии (14 часов)

Химический состав клетки. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки. Органические вещества: углеводы, белки, липиды, нуклеиновые кислоты, ATФ, их строение и роль в клетке. Ферменты, их роль в регуляции процессов жизнелеятельности.

Строение прокариотической клетки. Строение эукариотической клетки. Основные компоненты клетки. Строение мембран. Строение и функции ядра. Химический состав и строение хромосом. Цитоплазма и основные органоиды. Их функции в клетке.

Особенности строения клеток бактерий, грибов, животных и растений. Вирусы и бактериофаги. Вирус СПИДа.

Пластический и энергетический обмен. Основные этапы энергетического обмена. Отличительные особенности клеточного дыхания. Способы получения органических веществ: автотрофы и гетеротрофы. Фотосинтез, его фазы, космическая роль в биосфере. Хемосинтез и его

значение в биосфере.

Биосинтез белков. Понятие о гене. ДНК – источник генетической информации. Генетический код . Матричный принцип биосинтеза белков. Образование иРНК по матрице ДНК. Регуляция био-

синтеза.

Понятие о гомеостазе, регуляция процессов превращения веществ и энергии в клетке. Демонстрация микропрепаратов клеток растений и животных; модели клетки; опытов, иллюстрирующих процесс фотосинтеза; моделей РНК и ДНК, различных молекул и вирусных частиц; схемы путей метаболизма в клетке; модели – аппликации «Синтез белка». Лабораторные работы

№1. Строение эукариотических (растительной, животной, грибной) и прокариотических (бактериальных) клеток.

2. Размножение и индивидуальное развитие (онтогенез) организмов (5 часов) Самовоспроизведение — всеобщее свойство живого. Митоз как основа бесполого размножения и роста многоклеточных организмов, его фазы и биологическое значение. Формы размножения организмов. Бесполое размножение и его типы. Половое размножение. Мейоз, его биологическое значение. Сперматогенез. Овогенез. Оплодотворение. Особенности оплодотворения у цветковых растений. Биологическое значение оплодотворения.

Понятие индивидуального развития (онтогенеза) организмов.

Демонстрация таблиц, иллюстрирующих виды бесполого и полового размножения, эмбрионального и постэмбрионального развития высших растений, сходство зародышей позвоночных животных; схем митоза и мейоза.

3. Основы генетики (8 часов)

История развития генетики. Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Закон доминирования. Закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание. Закон независимого комбинирования. Фенотип и генотип. Цитологические основы генетических законов наследования.

Генетическое определение пола. Генетическая структура половых хромосом. Гомогаметный и гетерогаметный пол. Наследование признаков сцеплённых с полом.

Хромосомная теория наследственности. Группы сцепления генов. Сцеплённое наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов. Генетические карты хромосом.

Генотип как целостная система. Хромосомная (ядерная) и цитоплазматическая наследственность. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование и сверхдоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия.

Основные формы изменчивости. Генотипическая изменчивость. Мутации. Генные, хромосомные и геномные мутации. Соматические и генеративные мутации. Полулетальные и

летальные мутации. Причины и частота мутаций, мутагенные факторы. Эволюционная роль мутаций.

Комбинативная изменчивость. Возникновение различных комбинаций генов и их роль в создании генетического разнообразия в пределах вида. Эволюционное значение комбинативной изменчивости. Закон гомологических рядов в наследственной изменчивости. Фенотипическая, или модификационная, изменчивость. Роль условий внешней среды в развитии и проявлении признаков и свойств. Статистические закономерности модификационной изменчивости. Управление доминированием.

Демонстрация моделей – аппликаций, иллюстрирующих законы наследственности, перекрёст хромосом; результатов опытов, показывающих влияние условий среды на изменчивость организмов; гербарных материалов, коллекций, муляжей гибридных, полиплоидных растений.

Практическая работа

Решение генетических задач.

4. Генетика человека (4 часа)

Методы изучения наследственности человека. Генетическое разнообразие человека. Генетические данные о происхождении человека и человеческих расах. Характер наследования признаков у человека. Генетические основы здоровья. Влияние среды на генетическое здоровье человека. Генетические болезни. Генотип и здоровье человека. Генофонд популяции. Соотношение биологического и социального наследования. Социальные проблемы генетики. Этические проблемы генной инженерии. Генетический прогноз и медико — генетическое консультирование, их практическое значение, задачи и перспективы. Демонстрация хромосомных аномалий человека и их фенотипические проявления.

Тематическое планирование

№ п/п	Тема занятия	Количество
		часов
1. Введение (3ч.)		
1.	Методы исследования в биологии.	1
2.	Сущность жизни и свойства живого.	1
3.	Уровни организации живой материи.	1
	2. Основы цитологии (14ч.)	
4.	Особенности химического состава клетки.	1
5.	Вода и её роль в жизнедеятельности клетки.	1
6.	Углеводы и их роль в жизнедеятельности клетки.	1
7.	Строение и функции белков.	1
8.	Нуклеиновые кислоты и их роль в жизнедеятельности клет-	1
	ки.	
9.	Строение клетки. Клеточная мембрана. Ядро.	1
	Цитоплазма. Клеточный центр. Рибосомы.	
10.	Строение клетки. Комплекс Гольджи. Эндоплазматическая	1
	сеть. Лизосомы. Клеточные включения. Митохондрии.	
	Пластиды. Органоиды движения.	
11.	Сходства и различия в строении эукариотических и прока-	1
	риотических клеток.	
12.	Сходства и различия в строении клеток растений, живот-	1
	ных и грибов.	

13.	Неклеточные формы жизни. Вирусы и бактериофаги.	1
14.	Энергетический обмен в клетке.	1
15.	Питание клетки. Автотрофное питание. Фотосинтез.	1
13.	Хемосинтез.	1
16.	Генетический код. Транскрипция. Трансляция.	1
17.	Регуляция транскрипции и трансляции в клетке.	1
	иножение и индивидуальное развитие организмов (5ч.)	1 -
18.	Митоз и амитоз.Мейоз.	1
19.	Формы размножения организмов. Бесполое размножение.	1
	Половое размножение.	
20.	Развитие половых клеток.	1
	Оплодотворение.	
21.	Онтогенез – индивидуальное развитие организма.	1
22.	Индивидуальное развитие. Эмбриональный период.	1
	Постэмбриональный период.	
4. Осн	овы генетики (8 ч.)	
23.	История развития генетики. Гибридологический метод.	1
	Закономерности наследования. Моногибридное скрещива-	
	ние.	
24.	Множественные аллели. Анализирующее скрещивание.	1
25.	Дигибридное скрещивание. Закон независимого наследова-	1
	ния признаков.	
26.	Хромосомная теория наследственности.	1
27.	Взаимодействие неаллельных генов.	1
28.	Цитоплазматическая наследственность.	1
29.	Изменчивость.	1
30	Виды мутаций. Причины мутаций. Соматические и генера-	1
	тивные мутации.	
5. Гене	етика человека (4ч.)	
31.	Методы исследования генетики человека.	1
32.	Генетика и здоровье человека. Проблемы генетической без-	
	опасности.	
33.	Общебиологические закономерности, проявляющиеся на	1
	клеточном и организменном уровнях. (обобщающий урок)	
34.	Промежуточная аттестация	1

11 класс 1. Пояснительная записка (11 класс, 34 часа)

Программа элективного курса по биологии для 11 класса составлена в полном соответствии с Федеральным Государственным образовательным стандартом среднего общего образования, на основе Примерной программы среднего общего образования по биологии и авторской программы автора В. И. Сивоглазова, полностью отражающих содержание Примерной программы, с дополнениями, не превышающими требований к уровню подготовки учащихся к сдаче ЕГЭ по биологии.

На изучение биологии на базовом уровне в 11 классе отводится 34 часа, и поэтому элективный курс даёт возможность изучить программный материал в полном объёме, добавляя на изучение материала ещё 1 час.

В программе элективного курса нашли отражение цели и задачи изучения биологии на ступени среднего (полного) общего образования, изложенные в пояснительной записке к Примерной программе по биологии (углубленный уровень).

Элективный курс предназначен для изучения предмета «Практикум подготовки к ЕГЭ по биологии». Программой предусматривается изучение теоретических и прикладных основ общей биологии. В ней отражены задачи, стоящие в настоящее время перед биологической наукой, решение которых направлено на сохранение окружающей среды и здоровья человека. Особое внимание уделено экологическому воспитанию молодёжи.

В результате изучения предмета учащиеся старших классов приобретают знания об особенностях жизни как формах существования материи, роли физических и химических процессов в живых системах различного иерархического уровня организации; о фундаментальных понятиях, связанных с биологическими системами; о сущности процессов обмена веществ, онтогебнгза, наследственности и изменчивости, об основных теориях биологии — клеточной, хромосомной, эволюционной, теории наследственности; об основных областях применения биологических знаний в практике сельского хозяйства, в ряде отраслей промышленности, при охране окружающей среды и здоровья человека.

Учащиеся научатся пользоваться общебиологическими закономерностями для объяснения вопросов происхождения и развития жизни на Земле; давать аргументированную оценку новой информации по биологическим вопросам; решать генетические задачи; работать с учебной и научно-популярной литературой, составлять планы, конспекты, писать рефераты; владеть языком предмета.

Содержание курса направлено на достижение следующих целей:

- освоение знаний о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнона-учной картины мира; методах научного познания;
- овладение умениями обосновывать место и роль биологических знаний в практической деятельности людей, развитии современных технологий; проводить наблюдения за экосистемами с целью их описания и выявления естественных и антропогенных изменений; находить и анализировать информацию о живых объектах;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;
- воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем;
- использование приобретенных знаний и умений в повседневной жизни для оценки последствий своей деятельности по отношению к окружающей среде, здоровью других людей и собственному здоровью; обоснования и соблюдения мер профилактики заболеваний, правил поведения в природе.

Требования к уровню подготовки выпускников В результате изучения биологии выпускник должен знать /понимать

- основные положения биологических теорий (клеточная, эволюционная теория Ч.Дарвина); учение В.И.Вернадского о биосфере; сущность законов Г.Менделя, закономерностей изменчивости;
- строение биологических объектов: клетки; генов и хромосом; вида и экосистем (структура);
- сущность биологических процессов: размножение, оплодотворение, действие искусственного и естественного отбора, формирование приспособленности, образование видов, круговорот веществ и превращения энергии в экосистемах и биосфере;
- вклад выдающихся ученых в развитие биологической науки;
- биологическую терминологию и символику; уметь
- объяснять: роль биологии в формировании научного мировоззрения; вклад биологических теорий в формирование современной естественнонаучной картины мира; единство живой и неживой природы, родство живых организмов; отрицательное влияние алкоголя, никотина, наркотических веществ на развитие зародыша человека; влияние мутагенов на организм человека, экологических факторов на организмы; взаимосвязи организмов и окружающей среды; причины эволюции, изменяемости видов, нарушений развития организмов, наследственных заболеваний, мутаций, устойчивости и смены экосистем; необходимости сохранения многообразия видов;
- решать элементарные биологические задачи; составлять элементарные схемы скрещивания и схемы переноса веществ и энергии в экосистемах (цепи питания);
- описывать особей видов по морфологическому критерию;
- выявлять приспособления организмов к среде обитания, источники мутагенов в окружающей среде (косвенно), антропогенные изменения в экосистемах своей местности;
- сравнивать: биологические объекты (химический состав тел живой и неживой природы, зародыши человека и других млекопитающих, природные экосистемы и агроэкосистемы своей местности), процессы (естественный и искусственный отбор, половое и бесполое размножение) и делать выводы на основе сравнения;

- анализировать и оценивать различные гипотезы сущности жизни, происхождения жизни и человека, глобальные экологические проблемы и пути их решения, последствия собственной деятельности в окружающей среде;
- изучать изменения в экосистемах на биологических моделях;
- находить информацию о биологических объектах в различных источниках (учебных текстах, справочниках, научно-популярных изданиях, компьютерных базах данных, ресурсах Интернет) и критически ее оценивать.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

соблюдения мер профилактики отравлений, вирусных и других заболеваний, стрессов, вредных привычек (курение, алкоголизм, наркомания); правил поведения в природной среде;

оказания первой помощи при простудных и других заболеваниях, отравлении пищевыми продуктами;

оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение).

3. Требования к уровню подготовки учащихся

В результате изучения предмета учащиеся должны:

Знать/понимать:

основные положения биологических теорий (эволюционная теория Ч.Дарвина); строение биологических объектов: вида и экосистем (структура);

сущность биологических процессов: действие искусственного и естественного отбора, формирование приспособленности, образование видов, круговорот веществ и превращение энергии в экосистемах и биосфере;

биологическую терминологию и символику.

Уметь:

объяснять: взаимосвязи организмов и окружающей среды; причины эволюции, изменяемости видов, нарушения развития организмов, наследственных заболеваний, мутаций, устойчивости и смены экосистем; необходимость сохранения многообразия видов; решать элементарные биологические задачи; составлять элементарные схемы скрещивания и схемы переноса веществ и энергии в экосистемах (цепи питания);

описывать особей видов по морфологическому признаку;

выявлять антропогенные изменения в экосистемах своей местности;

анализировать и оценивать различные гипотезы существования жизни, происхождения жизни и человека, глобальные экологические проблемы и пути их решения, последствия собственной деятельности в окружающей среде;

изучать изменения в экосистемах на биологических моделях.

Использовать приобретенные ЗУН для:

соблюдения мер профилактики отравлений, вирусных и других заболеваний, стрессов, вредных привычек (курение, алкоголизм, наркомания), правил поведения в природной среде;

оказания первой помощи при простудных и других заболеваниях, отравлении пищевыми продуктами.

2. Содержание программы

Тема 1. Основы учения об эволюции (9 часов)

Ч.Дарвин и основные положения его теории. Вид, его критерии. Популяции. Генетический состав популяций. Изменение генофонда популяций. Борьба за существование и её формы. Естественный отбор и его формы. Видообразование. Макроэволюция, её доказательства. Главные направления эволюции органического мира.

Демонстрация живых растений и животных, гербарных экземпляров, коллекций, показывающих индивидуальную изменчивость и разнообразие сортов культурных рстений и пород домашних животных, а также результаты приспособленности организмов к среде обитания и результаты видообразования; примеров гомологичных и аналогичных органов, их строения и поисхождения в процессе онтогенеза; схем, иллюстрирующих процессы видообразования и соотношение путей прогрессивной биологической эволюции.

Тема 2. Основы селекции и биотехнологии (3 часа)

Задачи и методы селекции. Селекция растений и животных. Искусственный отбор в селекции. Гибридизация как метод в селекции. Типы скрещиваний. Полиплоидия в селекции растений. Достижения современной селекции.

Микроорганизмы, грибы, прокариоты как объекты биотехнологии. Селекция микроорганизмов, её значение для микробиологической промышленности. Микробиологическое производство пищевых продуктов, витаминов, ферментов, лекарств и т.д. Проблемы и перпективы биотехнологии.

Генная и клеточная инженерия, её достижения и перспективы.

Демонстрация живых растений, гербарных экземпляров, муляжей, таблиц, фотографий, иллюстрирующих результаты селекционной работы; портретов известных селекционеров; схем, иллюстрирующих методы получения новых сортов растений и пород животных; таблиц, схем микробиологического производства, продуктов микробиологического синтеза.

Тема 3. Антропогенез (4 часов)

Место человека в системе органического мира.

Доказательства происхождения человека от животных. Движущие силы антропогенеза. Биологические и социальные факторы антропогенеза. Основные этапы эволюции человека. Прародина человечества. Расселение человека и расообразование. Популяционная структура вида Homo sapiens. Адаптивные типы человека. Развитие материальной и духовной культуры, преобразование природы. Факторы эволюции современного человека. Влияние деятельности человека на биосферу.

Демонстрация моделей скелетов человека и позвоночных животных; модели «Происхождение человека» и остатков материальной культуры.

Тема 4. Основы экологии (10 часов)

Экология как наука. Среда обитания организмов и её факторы (абиотические, биотичемские, антропогенные). Местообитание и экологические ниши. Основные типы взаимодействий (нейтрализм, аменсализм, комменсализм, протокооперация, мутуализм). Конкурентные взаимодействия. Внутривидовая и межвидовая конкуренция. Основные экологические характеристики популяции. Динамика популяции. Экологические сообщества. Структура сообщества. Взаимосвязь организмов в сообществах. Пищевые цепи. Экологические пирамиды. Экологические сукцессии. Влияние загрязнений на живые организмы. Основы рационального природопользования. Природные ресурсы, эколлогическое сознание.

Тема 5. Эволюция биосферы и человек (4 часа)

Гипотезы о присхождении жизни. Креационизм, гипотеза панспермии. Современные представления о происхождении жизни. Гипотеза абиогенного происхождения жизни.

Основные этапы происхождения жизни на Земле. Гипотеза биопоэза, симбиотического происхождения эукариотических клеток. Биосфера. Эволюция биосферы. Антропогенное воздействие на биосферу.

Тема 6. Работа с контрольно - измерительными материалами (4 часа)

Количество учебных часов – 34

Тематическое планирование

№ п/п	Тема занятия	Количе-
		ство
		часов
Тема 1. Ост	новы учения об эволюции (9 часов)	
1	Ч.Дарвин и основные положения его теории.	1
2	Вид, его критерии.	1
3	Популяции.	1
4	Генетический состав популяций. Изменение генофонда популяций.	1
5	Борьба за существование и её формы.	1
6	Естественный отбор и его формы.	1
7	Видообразование.	1
8	Макроэволюция, её доказательства.	1
9	Главные направления эволюции органического мира.	1
Тема 2. Ост	новные методы селекции и биотехнологии (3 часа)	
10	Методы селекции растений.	1
11	Методы селекции животных.	1
12	Селекция микроорганизмов. Современное состояние и перспективы биотехнологий.	1
Тема 3. Ан	гропогенез (4 часов)	
13	Положение человека в системе животного мира.	1
14	Основные стадии антропогенеза.	1
15	Движущие силы антропогенеза.	1
16	Расы и их происхождение.	1
Тема 4. Ост	новы экологии (10 часов)	
17	Что изучает экология.	1
18	Среда обитания организмов и её факторы. Местообитание и эколо-	1
	гические ниши.	
19	Основные типы экологических взаимодействий.	1
20	Основные экологические характеристики популяции.	1
21	Экологические сообщества.	1
22	Структура сообщества. Взаимосвязь организмов в сообществах.	1
23	Пищевые цепи. Экологические пирамиды.	1
24	Экологические сукцессии.	1

25	Влияние загрязнений на живые организмы.	1	
26	Основы рационального природопользования.	1	
Тема 5. Эво	Тема 5. Эволюция биосферы и человек (4 часа)		
27	Гипотезы о происхождении жизни. Современные представления о	1	
	происхождении жизни.		
28	Основные этапы развития жизни на Земле.	1	
29	Эволюция биосферы.	1	
30	Антропогенное воздействие на биосферу.	1	
Тема 6. Раб	бота с контрольно – измерительными материалами (4 часа)		
31,32,33,34		4	
Итого: 34 часа			

ПРОВЕРЯЕМЫЕ НА ЕГЭ ПО БИОЛОГИИ ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

Код прове- ряемого тре- бования	Проверяемые требования к предметным результатам освоения основной образовательной программы среднего общего образования
1	Сформированность знаний о месте и роли биологии в системе естественных наук, в формировании современной естественнона- учной картины мира, в познании законов природы и решении жизненно важных социально-этических, экономических, экологических проблем человечества, а также в решении вопросов рационального природопользования, в формировании ценностного отношения к природе, обществу, человеку; о вкладе российских и
	зарубежных учёных – биологов в развитие биологии
	Владение системой знаний об основных методах научного познания, используемых в биологических исследованиях живых объектов и экосистем (описание, измерение, проведение наблюдений); способами выявления и оценки антропогенных изменений в природе.
2	Умение выдвигать гипотезы, проверять их экспериментальными средствами, формулируя цель исследования, анализировать полученные результаты и делать выводы. Выявление зависимости между исследуемыми величинами, объяснение полученных результатов и формулирование выводов с использованием научных понятий, теорий и законов
3	Умение владеть системой биологических знаний, которая включает: основополагающие биологические термины и понятия (жизнь,

	клетка, ткань, орган, организм, вид, популяция, экосистема, биоценоз,
	биосфера; метаболизм, гомеостаз, клеточный иммунитет, биосинтез
	белка, биополимеры, дискретность, саморегуляция, самовоспроизве-
	дение, наследственность, изменчивость, энергозависимость, рост и
	развитие);
	биологические теории: клеточная теория Т. Шванна, М. Шлейде-
	на, Р. Вирхова; клонально-селективного иммунитета П. Эрлих,
	И.И. Мечникова, хромосомная теория наследственности Т. Мор-
	гана, закон зародышевого сходства К. Бэра, эволюционная теория
	Ч. Дарвина, синтетическая теория эволюции, теория антропогене-
	за Ч. Дарвина; теория биогеоценоза В.Н. Сукачёва; учение Н.И.
	Вавилова о центрах многообразия и происхождения культурных
	растений, учение А.Н. Северцова о путях и направлениях эволю-
	ции, учение В.И. Вернадского – о биосфере);
	законы (единообразия потомков первого поколения, расщепления
	признаков, независимого наследования признаков Г. Менделя;
	сцепленного наследования признаков и нарушения сцепления ге-
	нов Т. Моргана; гомологических рядов в наследственной измен-
	чивости Н.И. Вавилова; генетического равновесия Дж. Харди и В.
	Вайнберга; зародышевого сходства К. Бэра; биогенетический за-
	кон Э. Геккеля, Ф. Мюллера);
	принципы (чистоты гамет, комплементарности);
	правила (минимума Ю. Либиха, экологической пирамиды чисел,
	биомассы и энергии);
	гипотезы (коацерватной А.И. Опарина, первичного бульона Дж.
	Холдейна, микросфер С. Фокса, рибозима Т. Чек)
	Умение решать поисковые биологические задачи; выявлять при-
	чинно-следственные связи между исследуемыми биологическими
	объектами, процессами и явлениями; делать выводы и прогнозы на
4	основании полученных результатов;
	составлять генотипические схемы скрещивания для разных типов
	наследования признаков у организмов, составлять схемы переноса
	веществ и энергии в экосистемах (цепи питания, пищевые сети)
	Умение устанавливать взаимосвязи между строением и функция-
	ми: органоидов, клеток разных тканей, органами и системами ор-
5	ганов у растений, животных и человека; между этапами обмена
	веществ; этапами клеточного цикла и жизненных циклов организ-
	мов; этапами эмбрионального развития; генотипом и фенотипом,

держания; интерпретировать этические аспекты современных исследований в биологии, медицине, биотехнологии; рассматривать глобальные экологические проблемы современности, формировать по отношению к ним собственную позицию

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ СОДЕРЖАНИЯ, ПРОВЕРЯЕМЫХ НА ЕГЭ ПО БИОЛОГИИ

Код	Проверяемый элемент содержания
1	Биология как наука. Живые системы и их изучение
1.1	Современная биология — комплексная наука. Биологические науки и изучаемые ими проблемы. Фундаментальные, прикладные и поисковые научные исследования в биологии. Значение биологии в формировании современной естественно-научной картины мира. Профессии, связанные с биологией. Значение биологии в практической деятельности человека: медицине, сельском хозяйстве, промышленности, охране природы
1.2	Живые системы как предмет изучения биологии. Свойства живых систем: единство химического состава, дискретность и целостность, сложность и упорядоченность структуры, открытость, самоорганизация, самовоспроизведение, раздражимость, изменчивость, рост и развитие. Уровни организации живых систем: молекулярный, клеточный, тканевый, организменный, популяционно-видовой, экосистемный (биогеоценотический), биосферный. Процессы, происходящие в живых системах. Основные признаки живого. Жизнь как форма существования материи
1.3	Методы биологической науки. Наблюдение, измерение, эксперимент, систематизация, метаанализ. Понятие о зависимой и независимой переменной. Планирование эксперимента. Постановка и проверка гипотез. Нулевая гипотеза. Понятие выборки и её достоверность. Разброс в биологических данных. Оценка достоверности полученных результатов. Причины искажения результатов эксперимента. Понятие статистического теста
2	Клетка как биологическая система
2.1	Клетка — структурно-функциональная единица живого. История открытия клетки. Работы Р. Гука, А. Левенгука. Клеточная теория (Т. Шванн, М. Шлейден, Р. Вирхов). Основные положения современной клеточной теории. Методы молекулярной и клеточной биологии: микроскопия, хроматография, электрофорез, метод меченых атомов, дифференциальное центрифугирование, культивирование клеток

Химический состав клетки. Макро-, микро- и ультрамикроэлементы. Вода и её роль как растворителя, реагента, участие в структурировании клетки, теплорегуляции. Минеральные вещества клетки, их биологическая роль. Роль катионов и анионов в клетке. Биологические полимеры. Белки. Аминокислотный состав белков. Структуры белковой молекулы. Первичная структура белка, пептидная связь. Вторичная, третичная, четвертичная структуры. Денатурация. Свойства белков. Классификация белков. Биологические функции белков. Углеводы. Моносахариды, дисахариды, олигосахариды и полисахариды. Общий план строения и физико-химические свойства углеводов. Биологические функции углеводов. Липиды. Гидрофильно-гидрофобные свойства. Классификация липидов. 2.2 Триглицериды, фосфолипиды, воски, стероиды. Биологические функции липидов. Общие свойства биологических мембран – текучесть, способность к самозамыканию, полупроницаемость. Нуклеиновые кислоты. ДНК и РНК. Строение нуклеиновых кислот. Нуклеотиды. Принцип комплементарности. Правило Чаргаффа. Структура ДНК – двойная спираль. Местонахождение и биологические функции ДНК. Виды РНК. Функции РНК в клетке. Строение молекулы АТФ. Макроэргические связи в молекуле АТФ. Биологические функции АТФ. Восстановленные переносчики, их функции в клетке. Секвенирование ДНК. Структурная биология: биохимические и биофизические исследования состава и пространственной структуры биомолекул Типы эукариотическая прокариотическая. клеток: И Структурнофункциональные образования клетки. Строение прокариотической клетки. Клеточная стенка бактерий и архей. Особенности строения гетеротрофной и автотрофной прокариотических клеток. Место и роль прокариот в биоценозах. Строение и функционирование эукариотической клетки. Плазматическая мембрана (плазмалемма). Структура плазматической мембраны. Транспорт 2.3 веществ через плазматическую мембрану: пассивный (диффузия, облегчённая диффузия), активный (первичный и вторичный активный транспорт). Полупроницаемость мембраны. Работа натрий-калиевого насоса. Эндоцитоз: пиноцитоз, фагоцитоз. Экзоцитоз. Клеточная стенка. Структура и функции клеточной стенки растений, грибов. Цитоплазма. Цитозоль. Цитоскелет. Движение цитоплазмы. Органоиды клетки. Одномембранные органоиды клетки: эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, их строение и функции. Взаимосвязь

одномембранных органоидов клетки. Строение гранулярного ретикулума. Синтез растворимых белков. Синтез клеточных мембран. Гладкий (агранулярный) эндоплазматический ретикулум. Секреторная функция аппарата Гольджи. Транспорт веществ в клетке. Вакуоли растительных клеток. Клеточный сок. Тургор.

Полуавтономные органоиды клетки: митохондрии, пластиды.

Строение и функции митохондрий и пластид. Первичные, вторичные и сложные пластиды фотосинтезирующих эукариот. Хлоропласты, хромопласты, лейкопласты высших растений.

Немембранные органоиды клетки Строение и функции немембранных органоидов клетки. Рибосомы. Микрофиламенты. Мышечные клетки. Микротрубочки. Клеточный центр. Строение и движение жгутиков и ресничек. Микротрубочки цитоплазмы. Центриоль.

Ядро. Оболочка ядра, хроматин, кариоплазма, ядрышки, их строение и функции. Ядерный белковый матрикс. Пространственное расположение хромосом в интерфазном ядре. Белки хроматина – гистоны.

Клеточные включения. Сравнительная характеристика клеток эукариот (растительной, животной, грибной)

Ассимиляция и диссимиляция — две стороны метаболизма. Типы обмена веществ: автотрофный и гетеротрофный. Участие кислорода в обменных процессах. Энергетическое обеспечение клетки: превращение АТФ в обменных процессах. Ферментативный характер реакций клеточного метаболизма. Ферменты, их строение, свойства и механизм действия. Коферменты. Отличия ферментов от неорганических катализаторов. Белки-активаторы и белки-ингибиторы. Зависимость скорости ферментативных реакций от различных факторов.

Первичный синтез органических веществ в клетке. Фотосинтез. Роль хлоропластов в процессе фотосинтеза. Световая и темновая фазы. Продуктивность фотосинтеза. Влияние различных факторов на скорость фотосинтеза. Значение фотосинтеза.

Хемосинтез. Разнообразие организмов-хемосинтетиков: нитрифицирующие бактерии, железобактерии, серобактерии, водородные бактерии. Значение хемосинтеза.

Анаэробные организмы. Виды брожения. Продукты брожения и их использование человеком. Анаэробные микроорганизмы как объекты биотехнологии и возбудители болезней.

Аэробные организмы. Этапы энергетического обмена. Подготовительный этап. Гликолиз – бескислородное расщепление глюкозы.

Биологическое окисление, или клеточное дыхание. Роль митохондрий в

2.4

	процессах биологического окисления. Циклические реакции. Окислительное фосфорилирование. Преимущества аэробного пути обмена веществ перед анаэробным. Эффективность энергетического обмена Реакции матричного синтеза. Принцип комплементарности в реакциях матричного синтеза. Реализация наследственной информации. Генетический
2.5	код, его свойства. Транскрипция — матричный синтез РНК. Принципы транскрипции: комплементарность, антипараллельность, асимметричность. Трансляция и её этапы. Участие транспортных РНК в биосинтезе белка. Условия биосинтеза белка. Кодирование аминокислот. Роль рибосом в биосинтезе белка. Организация генома у прокариот и эукариот. Регуляция активности генов у прокариот. Гипотеза оперона (Ф. Жакоб, Ж. Мано). Регуляция обменных процессов в клетке. Клеточный гомеостаз. Вирусы — неклеточные формы жизни и облигатные паразиты. Строение простых и сложных вирусов, ретровирусов, бактериофагов. Вирусные заболевания человека, животных, растений. СПИД, СОVID-19,
	социальные и медицинские проблемы
2.6	Клеточный цикл, его периоды и регуляция. Интерфаза и митоз. Особенности процессов, протекающих в интерфазе. Подготовка клетки к делению. Пресинтетический (постмитотический), синтетический и постсинтетический (премитотический) периоды интерфазы. Матричный синтез ДНК — репликация. Принципы репликации ДНК: комплементарность, полуконсервативный синтез, антипараллельность. Механизм репликации ДНК. Хромосомы. Строение хромосом. Теломеры и теломераза. Хромосомный набор клетки — кариотип. Диплоидный и гаплоидный наборы хромосом. Гомологичные хромосомы. Половые хромосомы. Деление клетки — митоз. Стадии митоза и происходящие в них процессы. Типы митоза. Кариокинез и цитокинез. Биологическое значение митоза. Регуляция митотического цикла клетки. Программируемая клеточная гибель — апоптоз. Функциональная геномика
3	Организм как биологическая система
3.1	Одноклеточные, колониальные, многоклеточные организмы и многотканевые организмы. Формы размножения организмов: бесполое (включая вегетативное) и половое. Виды бесполого размножения: почкование, споруляция, фрагментация, клонирование. Половое размножение. Половые клетки, или гаметы. Мейоз. Стадии мейоза.

Поведение хромосом в мейозе. Кроссинговер. Биологический смысл мейоза и полового процесса. Мейоз и его место в жизненном цикле организмов. Предзародышевое развитие. Гаметогенез у животных. Половые железы. Образование и развитие половых клеток. Сперматогенез и оогенез. Строение половых клеток. Оплодотворение и эмбриональное развитие животных. Способы оплодотворения: наружное, внутреннее. Партеногенез. Индивидуальное развитие организмов (онтогенез). Стадии эмбриогенеза животных (на примере лягушки). Дробление. Типы дробления. Особенности дробления млекопитающих. Зародышевые листки (гаструляция). Закладка органов и тканей из зародышевых листков. Взаимное влияние частей развивающегося зародыша (эмбриональная индукция). Закладка плана строения животного как результат иерархических взаимодействий генов. Влияние на эмбриональное развитие различных факторов окружающей среды. Рост и развитие животных. Постэмбриональный период. Прямое и непрямое развитие. Развитие с метаморфозом у беспозвоночных и позвоночных животных. Биологическое значение прямого и непрямого развития, их распространение в природе. Типы роста животных. Факторы регуляции роста животных и человека. Стадии постэмбрионального развития у животных и человека. Периоды онтогенеза человека. Размножение и развитие растений. Гаметофит и спорофит. Мейоз в жизненном цикле растений. Образование спор в процессе мейоза. Гаметогенез у растений. Оплодотворение и развитие растительных организмов. Двойное оплодотворение у цветковых растений. Образование и развитие семени. Механизмы регуляции онтогенеза у растений и животных История становления и развития генетики как науки. Основные генетические понятия и символы. Гомологичные хромосомы, аллельные гены, аль-3.2 тернативные признаки, доминантный и рецессивный признак, гомозигота, гетерозигота, чистая линия, гибриды, генотип, фенотип. Основные методы генетики: гибридологический, цитологический, молекулярно-генетический Моногибридное скрещивание. Первый закон Менделя – закон единообразия гибридов первого поколения. Правило доминирования. Второй закон Менделя – закон расщепления признаков. Цитологические основы моногибридного скрещивания. Гипотеза чистоты гамет. 3.3 Анализирующее скрещивание. Промежуточный характер наследования. Расщепление признаков при неполном доминировании. Дигибридное скрещивание. Третий закон Менделя – закон независимого наследования признаков. Цитологические основы дигибридного скрещивания.

	Сцепленное наследование признаков. Работы Т. Моргана. Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности.
	Генетика пола. Хромосомный механизм определения пола. Аутосомы и по-
	ловые хромосомы. Гомогаметный и гетерогаметный пол. Генетическая
	структура половых хромосом. Наследование признаков, сцепленных с по-
	лом.
	Генотип как целостная система. Плейотропия – множественное действие ге-
	на. Множественный аллелизм. Взаимодействие неаллельных генов. Ком-
	плементарность. Эпистаз. Полимерия
	Взаимодействие генотипа и среды при формировании фенотипа. Изменчивость
	признаков. Качественные и количественные признаки. Виды изменчивости:
	ненаследственная и наследственная.
	Модификационная изменчивость. Роль среды в формировании модификацион-
	ной изменчивости. Норма реакции признака. Вариационный ряд и вариацион-
	ная кривая (В. Иоганнсен). Свойства модификационной изменчивости.
	Генотипическая изменчивость. Свойства генотипической изменчивости. Виды
	генотипической изменчивости: комбинативная, мутационная.
3.4	Комбинативная изменчивость. Мейоз и половой процесс – основа комбинатив-
	ной изменчивости. Роль комбинативной изменчивости в создании генетическо-
	го разнообразия в пределах одного вида.
	Мутационная изменчивость. Виды мутаций: генные, хромосомные, геномные.
	Спонтанные и индуцированные мутации. Ядерные и цитоплазматические му-
	тации. Соматические и половые мутации. Причины возникновения мутаций.
	Мутагены и их влияние на организмы. Закономерности мутационного процес-
	са. Закон гомологических рядов в наследственной изменчивости (Н.И. Вави-
	лов). Внеядерная изменчивость и наследственность
	Кариотип человека. Международная программа исследования генома чело-
	века. Методы изучения генетики человека: генеалогический, близнецовый,
	цитогенетический, популяционно-статистический, молекулярно-
	генетический. Современное определение генотипа: полногеномное секвени-
3.5	рование, генотипирование, в том числе с помощью ПЦР-анализа. Наслед-
	ственные заболевания человека. Генные и хромосомные болезни человека.
	Болезни с наследственной предрасположенностью. Значение медицинской
	генетики в предотвращении и лечении генетических заболеваний человека.
	Стволовые клетки
2.6	Доместикация и селекция. Зарождение селекции и доместикации. Учение Н.И.
3.6	Вавилова о центрах происхождения и многообразия культурных растений.

	Роль селекции в создании сортов растений и пород животных. Сорт, порода, штамм. Закон гомологических рядов в наследственной изменчивости Н.И. Вавилова, его значение для селекционной работы.
	Методы селекционной работы. Искусственный отбор: массовый и индиви-
	дуальный. Этапы комбинационной селекции. Испытание производителей по
	потомству. Отбор по генотипу с помощью оценки фенотипа потомства и от-
	бор по генотипу с помощью анализа ДНК.
	Искусственный мутагенез как метод селекционной работы. Радиационный и
	химический мутагенез как источник мутаций у культурных форм организ-
	мов. Использование геномного редактирования и методов рекомбинантных
	ДНК для получения исходного материала для селекции.
	Получение полиплоидов. Внутривидовая гибридизация. Близкородственное
	скрещивание, или инбридинг. Неродственное скрещивание, или аутбридинг. Ге-
	терозис и его причины. Использование гетерозиса в селекции. Отдалённая ги-
	бридизация. Преодоление бесплодия межвидовых гибридов. Достижения селек-
	ции растений и животных
	Объекты, используемые в биотехнологии, – клеточные и тканевые культуры,
	микроорганизмы, их характеристика. Традиционная биотехнология: хлебопе-
	чение, получение кисломолочных продуктов, виноделие. Микробиологиче-
	ский синтез. Объекты микробиологических технологий. Производство белка,
3.7	аминокислот и витаминов. Искусственное оплодотворение. Реконструкция
3.7	яйцеклеток и клонирование животных. Метод трансплантации ядер клеток.
	Хромосомная и генная инженерия. Искусственный синтез гена и конструи-
	рование рекомбинантных ДНК. Достижения и перспективы хромосомной и
	генной инженерии. Медицинские биотехнологии. Использование стволовых
	клеток
4	Система и многообразие органического мира
	Биологическое разнообразие организмов. Современная система органиче-
	ского мира. Принципы классификации организмов. Основные систематиче-
	ские группы организмов.
4.1	Особенности строения и жизнедеятельности одноклеточных организмов.
4.1	Бактерии, археи, одноклеточные грибы, одноклеточные водоросли, другие
	протисты. Колониальные организмы. Движение одноклеточных организмов:
	амёбоидное, жгутиковое, ресничное. Защита у одноклеточных организмов.
	Раздражимость у одноклеточных организмов. Таксисы
	Многоклеточные растения. Взаимосвязь частей многоклеточного организма.
4.2	Ткани, органы и системы органов многоклеточного организма. Организм
	как единое целое. Ткани растений. Типы растительных тканей: образова-
	Pro Pro Pro Pro Pro Pro Pro

	тельная, покровная, проводящая, основная, механическая. Особенности
	строения, функций и расположения тканей в органах растений
4.3	Вегетативные и генеративные органы растений. Функции органов и систем органов. Каркас растений. Движение многоклеточных растений: тропизмы и настии. Поглощение воды, углекислого газа и минеральных веществ растениями. Дыхание растений. Диффузия газов через поверхность клетки. Транспортные системы растений. Выделение у растений. Защита у многоклеточных растений. Кутикула. Средства пассивной и химической защиты. Фитонциды. Раздражимость и регуляция у организмов. Раздражимость и регуляция у многоклеточных растений. Ростовые вещества и их значение Многоклеточные животные. Взаимосвязь частей многоклеточного организма. Ткани, органы и системы органов многоклеточного организма. Организм как единое целое. Гомеостаз. Ткани животных и человека. Типы жи-
4.3	вотных тканей: эпителиальная, соединительная, мышечная, нервная. Особенности строения, функций и расположения тканей в органах животных и человека
4.6	Органы и системы органов животных. Функции органов и систем органов. Опора тела организмов. Скелеты одноклеточных и многоклеточных животных. Наружный и внутренний скелет. Строение и типы соединения костей. Движение многоклеточных животных. Питание животных. Питание позвоночных животных. Дыхание животных. Кожное дыхание. Жаберное и лёгочное дыхание. Дыхание позвоночных животных. Эволюционное усложнение строения лёгких позвоночных животных. Дыхательная система человека. Механизм вентиляции лёгких у птиц и млекопитающих. Транспорт веществ у организмов. Транспорт веществ у животных. Кровеносная система и её органы. Кровеносная система позвоночных животных. Круги кровообращения. Эволюционные усложнения строения кровеносной системы позвоночных животных. Выделение у организмов. Выделение у животных. Сократительные вакуоли. Органы выделение у позвоночных животных. Защита у многоклеточных животных. Покровы и их производные. Раздражимость и регуляция у организмов. Раздражимость у одноклеточных организмов. Таксисы. Раздражимость и регуляция у многоклеточных растений. Ростовые вещества и их значение. Нервная система и рефлекторная регуляция у многоклеточных животных. Нервная система и её отделы. Эволюционное усложнение строения нервной

	системы у животных.
	Разработка алгоритмов и программ для эффективной функциональной анно-
	тации геномов, транскриптомов, протеомов, метаболомов микроорганизмов,
	растений, животных и человека
5	Организм человека и его здоровье
	Органы и системы органов человека. Отделы головного мозга позвоночных
	животных. Рефлекс и рефлекторная дуга. Безусловные и условные рефлек-
5.1	сы. Гуморальная регуляция и эндокринная система животных и человека.
3.1	Железы эндокринной системы и их гормоны. Действие гормонов. Взаимо-
	связь нервной и эндокринной систем. Гипоталамо-гипофизарная система.
	Рефлекс и рефлекторная дуга. Безусловные и условные рефлексы
	Защита организма от болезней. Иммунная система человека. Клеточный и
	гуморальный иммунитет. Врождённый, приобретённый специфический им-
5.2	мунитет. Теория клонально-селективного иммунитета (П.Эрлих,
	Ф.М.Бернет, С.Тонегава). Воспалительные ответы организмов. Роль врож-
	дённого иммунитета в развитии системных заболеваний
5.3	Кровеносная система и её органы. Сердце, кровеносные сосуды и кровь.
3.3	Круги кровообращения. Работа сердца и её регуляция
	Дыхание человека. Диффузия газов через поверхность клетки. Дыхательная
5.4	система человека. Дыхательная поверхность. Регуляция дыхания. Дыха-
	тельные объёмы
5.5	Пищеварительная система человека. Отделы пищеварительного тракта. Пи-
	щеварительные железы. Внутриполостное и внутриклеточное пищеварение
	Покровы и их производные. Органы выделения. Почки. Строение и функ-
5.6	ционирование нефрона. Фильтрация, секреция и обратное всасывание как
	механизмы работы органов выделения. Образование мочи у человека
5.7	Движение человека: мышечная система. Скелетные мышцы и их работа.
5.7	Строение и типы соединения костей
6	Теория эволюции. Развитие жизни на Земле
	Эволюционная теория Ч. Дарвина. Предпосылки возникновения дарвиниз-
6.1	ма. Жизнь и научная деятельность Ч. Дарвина.
	Движущие силы эволюции видов по Ч. Дарвину (высокая интенсивность
	размножения организмов, наследственная изменчивость, борьба за суще-
	ствование, естественный и искусственный отбор).
	Оформление синтетической теории эволюции (СТЭ). Нейтральная теория
	эволюции. Современная эволюционная биология. Значение эволюционной
	теории в формировании естественно-научной картины мира

Популяция как элементарная единица эволюции. Современные методы оценки генетического разнообразия и структуры популяций. Изменение генофонда популяции как элементарное эволюционное явление. Закон генетического равновесия Дж. Харди, В. Вайнберга.

Элементарные факторы (движущие силы) эволюции. Мутационный процесс. Комбинативная изменчивость. Дрейф генов – случайные ненаправлен-

Элементарные факторы (движущие силы) эволюции. Мутационный процесс. Комбинативная изменчивость. Дрейф генов – случайные ненаправленные изменения частот аллелей в популяциях. Эффект основателя. Миграции. Изоляция популяций: географическая (пространственная), биологическая (репродуктивная).

Естественный отбор – направляющий фактор эволюции. Формы естественного отбора: движущий, стабилизирующий, разрывающий (дизруптивный). Половой отбор.

Приспособленность организмов как результат микроэволюции. Возникновение приспособлений у организмов. Ароморфозы и идиоадаптации. Примеры приспособлений у организмов. Относительность приспособленности организмов.

Вид, его критерии и структура. Видообразование как результат микроэволюции. Изоляция — ключевой фактор видообразования. Пути и способы видообразования: аллопатрическое (географическое), симпатрическое (экологическое), «мгновенное» (полиплоидизация, гибридизация). Длительность эволюционных процессов.

Механизмы формирования биологического разнообразия.

Роль эволюционной биологии в разработке научных методов сохранения биоразнообразия. Микроэволюция и коэволюция паразитов и их хозяев. Механизмы формирования устойчивости к антибиотикам и способы борьбы с ней

Методы изучения макроэволюции. Палеонтологические методы изучения эволюции. Переходные формы и филогенетические ряды организмов.

Биогеографические методы изучения эволюции. Сравнение флоры и фауны материков и островов. Биогеографические области Земли. Виды-эндемики и реликты.

Эмбриологические и сравнительно-морфологические методы изучения эволюции. Генетические механизмы эволюции онтогенеза и появления эволюционных новшеств. Гомологичные и аналогичные органы. Рудиментарные органы и атавизмы. Молекулярно-генетические, биохимические и математические методы изучения эволюции. Гомологичные гены. Современные методы построения филогенетических деревьев.

Хромосомные мутации и эволюция геномов.

Общие закономерности (правила) эволюции. Необратимость эволюции.

6.2

6.3

Адаптивная радиация. Неравномерность темпов эволюции

Научные гипотезы происхождения жизни на Земле. Абиогенез и панспермия. Донаучные представления о зарождении жизни (креационизм). Гипотеза постоянного самозарождения жизни и её опровержение опытами Ф. Реди, Л. Спалланцани, Л. Пастера. Происхождение жизни и астробиология.

Основные этапы неорганической эволюции. Планетарная (геологическая) эволюция. Химическая эволюция. Абиогенный синтез органических веществ из неорганических. Опыт С. Миллера и Г. Юри. Образование полимеров из мономеров. Коацерватная гипотеза А.И. Опарина, гипотеза первичного бульона Дж. Холдейна, генетическая гипотеза Г. Мёллера. Рибозимы (Т. Чек) и гипотеза «мира РНК» У. Гилберта. Формирование мембран и возникновение протоклетки.

История Земли и методы её изучения. Ископаемые органические остатки. Геохронология и её методы. Относительная и абсолютная геохронология. Геохронологическая шкала: эоны, эры, периоды, эпохи.

Начальные этапы органической эволюции. Появление и эволюция первых клеток. Эволюция метаболизма. Возникновение первых экосистем. Современные микробные биоплёнки как аналог первых на Земле сообществ. Строматолиты. Прокариоты и эукариоты.

6.4 Происхождение эукариот (симбиогенез). Эволюционное происхождение вирусов. Происхождение многоклеточных организмов. Возникновение основных групп многоклеточных организмов.

> Основные этапы эволюции высших растений. Основные ароморфозы растений. Выход растений на сушу. Появление споровых растений и завоевание ими суши. Семенные растения. Происхождение цветковых растений.

> Основные этапы эволюции животного мира. Основные ароморфозы животных. Вендская фауна. Кембрийский взрыв – появление современных типов. Первые хордовые животные. Жизнь в воде. Эволюция позвоночных. Происхождение амфибий и рептилий. Происхождение млекопитающих и птиц. Принцип ключевого ароморфоза. Освоение беспозвоночными и позвоночными животными суши.

> Развитие жизни на Земле по эрам и периодам: архей, протерозой, палеозой, мезозой, кайнозой. Общая характеристика климата и геологических процессов. Появление и расцвет характерных организмов. Углеобразование: его условия и влияние на газовый состав атмосферы.

> Массовые вымирания – экологические кризисы прошлого. Причины и следствия массовых вымираний. Современный экологический кризис, его особенности

	Разделы и задачи антропологии. Методы антропологии. Становление представлений о происхождении человека. Современные научные теории. Сходство человека с животными. Систематическое положение человека. Свидетельства сходства человека с животными: сравнительноморфологические, эмбриологические, физиолого-биохимические, поведенческие. Отличия человека от животных. Прямохождение и комплекс связанных с ним признаков. Развитие головного мозга и второй сигнальной системы. Движущие силы (факторы) антропогенеза: биологические, социальные. Соотношение биологических и социальных факторов в антропогенезе. Основные стадии антропогенеза. Австралопитеки — двуногие предки людей. Человек умелый, первые изготовления орудий труда. Человек прямоходящий и первый выход людей за пределы Африки. Человек гейдельбергский —
6.5	общий предок неандертальского человека и человека разумного. Человек неандертальский как вид людей холодного климата. Человек разумный современного типа, денисовский человек, освоение континентов за пределами Африки. Эволюция современного человека. Естественный отбор в популяциях человека. Мутационный процесс и полиморфизм. Популяционные волны, дрейф генов, миграция и «эффект основателя» в популяциях современного человека. Человеческие расы. Понятие о расе. Большие расы: европеоидная (евразийская), австрало-негроидная (экваториальная), монголоидная (азиатскоамериканская). Время и пути расселения человека по планете. Единство человеческих рас. Научная несостоятельность расизма. Приспособленность человека к разным условиям окружающей среды. Влияние географической среды и дрейфа генов на морфологию и физиологию человека
7	Экосистемы и присущие им закономерности
7.1	Разделы и задачи экологии. Связь экологии с другими науками. Методы экологии. Полевые наблюдения. Эксперименты в экологии: природные и лабораторные. Моделирование в экологии. Мониторинг окружающей среды: локальный, региональный и глобальный
7.2	Экологические факторы и закономерности их действия. Классификация экологических факторов: абиотические, биотические, антропогенные. Общие закономерности действия экологических факторов. Правило минимума (К. Шпренгель, Ю. Либих). Толерантность. Эврибионтные и стенобионтные организмы. Абиотические факторы. Свет как экологический фактор. Действие разных

участков солнечного спектра на организмы. Экологические группы растений и животных по отношению к свету. Сигнальная роль света. Фотопериодизм.

Температура как экологический фактор. Действие температуры на организмы. Пойкилотермные и гомойотермные организмы. Эвритермные и стенотермные организмы.

Влажность как экологический фактор. Приспособления растений к поддержанию водного баланса. Классификация растений по отношению к воде. Приспособления животных к изменению водного режима.

Среды обитания организмов: водная, наземно-воздушная, почвенная, глубинная подпочвенная, внутриорганизменная. Физико-химические особенности сред обитания организмов. Приспособления организмов к жизни в разных средах.

Биологические ритмы. Внешние и внутренние ритмы. Суточные и годичные ритмы. Приспособленность организмов к сезонным изменениям условий жизни.

Жизненные формы организмов. Понятие о жизненной форме. Жизненные формы растений: деревья, кустарники, кустарнички, многолетние травы, однолетние травы. Жизненные формы животных: гидробионты, геобионты, аэробионты. Особенности строения и образа жизни.

Биотические факторы. Виды биотических взаимодействий: конкуренция, хищничество, симбиоз и его формы. Паразитизм, кооперация, мутуализм, комменсализм (квартирантство, нахлебничество). Нетрофические взаимодействия (топические, форические, фабрические). Значение биотических взаимодействий для существования организмов в среде обитания. Принцип конкурентного исключения

Экологические характеристики популяции. Популяция как биологическая система. Роль неоднородности среды, физических барьеров и особенностей биологии видов в формировании пространственной структуры популяций. Основные показатели популяции: численность, плотность, возрастная и половая структура, рождаемость, прирост, темп роста, смертность, миграция. Экологическая структура популяции. Оценка численности популяции. Динамика популяции и её регуляция. Биотический потенциал популяции. Моделирование динамики популяции. Кривые роста численности популяции. Кривые выживания. Регуляция численности популяций: роль факторов, зависящих и не зависящих от плотности. Экологические стратегии видов (г- и К-стратегии).

Понятие об экологической нише вида. Местообитание. Многомерная модель экологической ниши Дж.И. Хатчинсона. Размеры экологической ниши.

7.3

	Потенциальная и реализованная ниши.
	Вид как система популяций. Ареалы видов. Виды и их жизненные страте-
	гии. Закономерности поведения и миграций животных. Биологические инвазии чужеродных видов
	· ·
	Сообщества организмов. Биоценоз и его структура. Связи между организ-
	мами в биоценозе. Экосистема как открытая система (А.Дж. Тенсли). Функ-
	циональные блоки организмов в экосистеме: продуценты, консументы, ре-
	дуценты. Трофические уровни. Трофические цепи и сети. Абиотические
	блоки экосистем. Почвы и илы в экосистемах. Круговорот веществ и поток энергии в экосистеме.
	Основные показатели экосистемы. Биомасса и продукция. Экологические
	пирамиды чисел, биомассы и энергии.
	Направленные закономерные смены сообществ – сукцессии. Первичные и
	вторичные сукцессии и их причины. Антропогенные воздействия на сукцес-
7.4	сии. Климаксное сообщество. Биоразнообразие и полнота круговорота ве-
	ществ – основа устойчивости сообществ.
	Природные экосистемы. Антропогенные экосистемы. Агроэкосистема. Аг-
	роценоз. Различия между антропогенными и природными экосистемами.
	Урбоэкосистемы. Основные компоненты урбоэкосистем. Городская флора и
	фауна. Синантропизация городской фауны. Биологическое и хозяйственное
	значение агроэкосистем и урбоэкосистем. Закономерности формирования
	основных взаимодействий организмов в экосистемах.
	Перенос энергии и веществ между смежными экосистемами. Устойчивость
	организмов, популяций и экосистем в условиях естественных и антропоген-
	ных воздействий
	Биосфера – общепланетарная оболочка Земли, где существует или суще-
	ствовала жизнь. Учение В.И. Вернадского о биосфере. Области биосферы и
	её состав. Живое вещество биосферы и его функции.
	Закономерности существования биосферы. Особенности биосферы как гло-
	бальной экосистемы. Динамическое равновесие в биосфере. Круговороты
	веществ и биогеохимические циклы (углерода, азота). Ритмичность явлений
7.5	в биосфере.
	Зональность биосферы. Понятие о биоме. Основные биомы суши: тундра,
	хвойные леса, смешанные и широколиственные леса, степи, саванны, пу-
	стыни, тропические леса, высокогорья. Климат, растительный и животный
	мир биомов суши.
	Структура и функция живых систем, оценка их ресурсного потенциала и
	биосферных функций

Экологические кризисы и их причины. Воздействие человека на биосферу.
Загрязнение воздушной среды. Охрана воздуха. Загрязнение водной среды.
Охрана водных ресурсов. Разрушение почвы. Охрана почвенных ресурсов.
Изменение климата.
Антропогенное воздействие на растительный и животный мир. Охрана рас-
тительного и животного мира. Основные принципы охраны природы. Крас-
ные книги. Особо охраняемые природные территории (ООПТ). Ботаниче-
ские сады и зоологические парки.
Основные принципы устойчивого развития человечества и природы. Рацио-
нальное природопользование и сохранение биологического разнообразия
Земли

7.6

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

- Биология. Общая биология, 10 класс/ Захаров В.Б., Мамонтов С.Г., Сонин Н.И., Захарова Е.Т.; под редакцией Захарова В.Б., Общество с ограниченной ответственностью «ДРО-ФА»; Акционерное общество «Издательство «Просвещение»
- Биология. Общая биология, 11 класс/ Захаров В.Б., Мамонтов С.Г., Сонин Н.И., Захарова Е.Т.; под редакцией Захарова В.Б., Общество с ограниченной ответственностью «ДРО-ФА»; Акционерное общество «Издательство «Просвещение»
- ЕГЭ 2026. Биология. Типовые экзаменационные материалы. Под редакцией В.С. Рохлова. Издательство Национальное образование. Москва.